Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(54): 30736-30746, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-35548720

ABSTRACT

A Raman spectroscopic study of Cu2ZnSnS4 (CZTS) nanocrystals (NCs) produced by a "green" synthesis in aqueous solutions is reported. Size-selected CZTS NCs reveal phonon confinement that manifests itself in an upward shift of the main phonon peak by about 3-4 cm-1 by varying the NC diameter from 3 to 2 nm. A non-monotonous shift and narrowing of the main peak are attributed to the special shape of the phonon dispersion in this material. Moreover, the method of sample preparation, the nature of the supporting substrate and the photoexcitation regime are found to crucially influence the Raman spectra of the CZTS samples. Particularly, the possible oxidation and hydrolysis of CZTS NCs with the concomitant formation of a Cu-S phase are systematically investigated. The nature of the film support is found to strongly affect the amount of admixture copper sulfide phases with the Cu2-x S/CuS content being the highest for oxidized silicon and glass and notably lower for ITO and even less for gold supports. The effect is assumed to originate from the different hydrophilicity of the supporting surfaces, resulting in a different morphology and surface area of the NC film exposed to the atmosphere, as well as the degree of the NC oxidation/hydrolysis. The amount of copper sulfide increases with the laser power. This effect is interpreted as a result of photochemical/photocatalytic transformations of the CZTS NCs.

2.
Nanoscale ; 8(39): 17204-17212, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27722399

ABSTRACT

Recently developed two-dimensional colloidal semiconductor nanocrystals, or nanoplatelets (NPLs), extend the palette of solution-processable free-standing 2D nanomaterials of high performance. Growing CdSe and CdS parts subsequently in either side-by-side or stacked manner results in core-crown or core/shell structures, respectively. Both kinds of heterogeneous NPLs find efficient applications and represent interesting materials to study the electronic and lattice excitations and interaction between them under strong one-directional confinement. Here, we investigated by Raman and infrared spectroscopy the phonon spectra and electron-phonon coupling in CdSe/CdS core/shell and core-crown NPLs. A number of distinct spectral features of the two NPL morphologies are observed, which are further modified by tuning the laser excitation energy Eexc between in- and off-resonant conditions. The general difference is the larger number of phonon modes in core/shell NPLs and their spectral shifts with increasing shell thickness, as well as with Eexc. This behaviour is explained by strong mutual influence of the core and shell and formation of combined phonon modes. In the core-crown structure, the CdSe and CdS modes preserve more independent behaviour with only interface modes forming the phonon overtones with phonons of the core.

3.
J Phys Condens Matter ; 28(6): 065401, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26795711

ABSTRACT

The experimental resonant and non-resonant Raman scattering spectra of the kesterite structural modification of Cu2ZnGeS4 single crystals are reported. The results are compared with those calculated theoretically within the density functional perturbation theory. For the majority of lines a good agreement (within 2-5 cm(-1)) is established between experimental and calculated mode frequencies. However, several dominant spectral lines, in particular the two intense fully symmetric modes, are found to deviate from the calculated values by as much as 20 cm(-1). A possible reason for this discrepancy is found to be associated with the Fermi resonant interaction between one and two-phonon vibrational excitations. The modelling of spectra, which takes into account the symmetry of interacting states, allows a qualitative description of the observed experimental findings. Due to the similarity of the vibrational spectra of Cu2A (II) B (IV) S4 (A = Zn, Mn, Cd; B = Sn, Ge, Si) chalcogenides, Fermi resonance is argued to be a general phenomenon for this class of compounds.

4.
Nanotechnology ; 20(36): 365704, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19687558

ABSTRACT

The effect of shells of various thicknesses on the vibrational resonant Raman spectra of CdSe/ZnS core-shell nanoparticles is studied. The dependence of the core-shell structure on the method of shell deposition is derived from a comparison of the vibrational and photoluminescence spectra of nanoparticles. Along with the appearance of peaks attributed to the shell, the phonon spectrum of the core undergoes significant changes upon shell growth. The change of the CdSe LO peak lineshape in core-shell nanoparticles is discussed with respect to possible changes in the spectrum of both optical and acoustical phonons upon shell formation. Based on the observed decrease of the CdSe 2LO/LO peak intensity ratio, a weakening of exciton coupling to the CdSe LO phonon upon ZnS shell deposition is supposed. The change in the carrier localization volumes upon shell formation is discussed as a possible reason for the reduced coupling.

5.
Nanoscale Res Lett ; 5(2): 403-9, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20672091

ABSTRACT

Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60-80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time.

6.
Nanotechnology ; 19(14): 145703, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-21817769

ABSTRACT

Raman and lateral photoconductivity spectra of self-assembled SiGe nanoislands were studied with a height of ∼2 nm and a base of ∼20 nm formed at a temperature of 500 °C. It was estimated that the value of elastic deformation (ε(xx)) was -0.022 (ε(zz) = 0.017), while the germanium content in the islands (x) was 0.66. The obtained values of x and ε were used to calculate band offsets at the interfaces and the energy of interband transitions of structures under study. It was shown that the minimal energy of photocurrent observation is 0.52 eV, which is below the bandgap of the QDs under study. The first photocurrent component which began to contribute at 0.52 eV and had a peak at 0.68 eV is explained by optical transitions of electrons from the QD HH localized states of the valence band to the conduction band Δ(2) valley of the surrounding silicon matrix in which tensile strains are present. The second component with limiting energy of 0.73 eV can be caused by interband electron transitions from the HH valence band of the QDs to the Δ(4) valley of the QD conduction band.

SELECTION OF CITATIONS
SEARCH DETAIL
...